5123导航取五湖之利取四-欢迎莅临

职称:教授

电话:62782154

E-mail address:wbing@tsinghua.edu.cn

个人简介

王兵,洪堡学者,博士生导师,工学博士;现任澳门所有娱乐官方网站链党委书记。

1977年2月生于河北唐山;2005年起于澳门所有娱乐官方网站链执教至今,历任讲师、副教授、教授;2009年5月起负责学院学生工作,曾任学院党委研究生工作组组长、学院党委副书记。

联系方式:

电话:010-62782154

邮箱:wbing@tsinghua.edu.cn

教育背景

1996年9月由河北省唐山市第一中学考入清华大学工程力学系学习,2000年7月获工学学士学位,历任热六班班长、力学系学生会副主席;

2000年9月保送直接攻读清华大学工程力学系硕博连读研究生,研究方向为两相流体动力学与湍流燃烧,2005年1月毕业并获工学硕士、博士学位,历任研究生班党支部书记,清华大学研究生会副主席,清华大学研究生团委副书记,清华大学博士生报告团团长等。

工作履历

2005年3月,进入澳门所有娱乐官方网站链工程力学系流体力学研究所工作,2008年5 月,回国后进入澳门所有娱乐官方网站链航空宇航工程系;目前招收航空宇航科学与技术、流体力学两个学科博士研究生。

2006年10月-2008年4月,获得德国洪堡(Alexander von Humboldt)奖学金,在德国慕尼黑工业大学流体动力学研究组访问研究;后多次赴德国慕尼黑工业大学、德国亚琛工业大学、法国图卢兹流体力学研究所、波兰华沙理工大学等研究机构进行短期访学。

教学情况:

热爱教育教学事业,心系学生,培养航空宇航、力学等专业人才;曾荣获首都暑期社会实践先进工作者(2019)、清华大学先进工作者(2019)、北京市高等教育教学成果奖一等奖(2018)、清华大学教学成果一等奖(2016)、清华大学青年教师教学优秀奖(2015)、清华大学优秀共产党员(2015)等,还曾荣获北京高校优秀德育工作者(2014)、清华大学林枫辅导员奖(2011)等。

承担教学课程如下:

《推进原理与热流体基础》64学时(本科生)

《航空宇航工程全过程设计》32学时(本科生)

《发动机结构与系统设计》48学时(本科生,合讲)

《航空宇航推进理论》64学时(研究生)

《航空宇航推进的数值方法》48学时(研究生)

《两相流体动力学》 32学时(研究生)

《计算传热学》48学时(研究生,合讲)

学术兼职

担任美国AIAA增压燃烧技术委员会委员(2019-)、VI区委员会委员(2020-);国际燃烧与能源利用大会(ICCEU)国际组织委员会委员(2019-2022);第五届全国青年燃烧会议组委会委员(2019);第27届国际爆炸与反应系统动力学会议(ICDERS)组委会委员(2019);第九届国际爆震推进研讨会(IWDP)大会主席(2018);中国力学学会激波与激波管专业委员会委员(2020-)、环境力学专业委员会委员(2015-2020);中国工程热物理学会多相流分会副会长(2020-)、爆震与新型推进专业委员会委员(2017-2022);国际燃烧不稳定性大会科学委员会委员(2017);第十一届工业爆炸与安全防护国际学术会议组委会副主席(2017)。

国家节能中心专家(2010年起)、教育部留学基金委评审专家(2012年起)、国家自然科学基金评审专家、浙江省自然科学基金评审专家、河北省自然科学基金评审专家、黑龙江省自然科学基金评审专家、黑龙江科技奖、河北科技奖、安徽省科技奖、山东省科技奖等评审专家。

《AIAA Journal》特邀编委,《Aerospace Science and Technology》副主编,《Journal of Engineering》主编,《Chinese Journal of Aeronautics》青年编委,《航空学报》、《推进技术》、《火箭推进》、《兵器装备工程学报》、《气体物理》、《清华大学学报》等期刊编委。

担任《Journal of Fluid Mechanics》、《Physics of Fluids》、《Physics Fluids Review》、《Acta Astronautica》、《AIAA Journal》、《International Journal of Heat and Mass Transfer》、《Numerical Heat Transfer》、《Experimental Heat and Fluids》、《Applied Physics Letter》、《Shock Wave》、《ASME-Journal of Fluid Engineering》、《Journal of Aerospace Engineering》、《International Journal of Hydrogen Energy》等多个国际期刊和《推进技术》、《力学进展》、《航空学报》、《航空动力学报》等国内期刊审稿人。

研究概况

澳门所有娱乐官方网站链航空宇航工程系喷雾燃烧与推进实验室负责人,主要研究方向为极端条件两相流与反应流,研究概况如下:

航空宇航前沿基础科学问题,包括先进发动机极端条件下湍流两相流动、瞬变及反应过程机理、规律与控制机制(国家自然科学基金、国家重大工程项目等资助);

流动与燃烧不稳定性,包括可压缩流体的R-M不稳定性、液体火箭发动机高压燃烧不稳定性、超燃冲压发动机超声速燃烧不稳定性、固体火箭发动机燃烧本质不稳定性、航空燃气涡轮发动机贫燃预混燃烧不稳定性、旋转爆震发动机爆震燃烧不稳定性等(国家自然科学基金、国家重大工程项目等资助);

航空宇航先进数值模拟方法及其工程应用,包括大涡模拟,直接模拟,现代数值格式,混合LES/RANS模拟,无网格方法(SPH),高性能计算等(科技部重点研发计划、国家重大工程项目等资助);

新概念推进及组合发动机总体与数字化集成设计,包括数字发动机、数字孪生系统等(工程单位课题资助);

能源与环境基础科学问题,包括空化及多物理作用机理与规律、颗粒污染物弥散与控制等(国家自然科学基金资助)。

本实验室招收致力于从事“中国心”(包括“航天心”和“航空心”)的研究生,开展下一代爆震发动机、新概念组合推进与空天动力等相关基础前沿与关键技术研究工作。热烈欢迎清华本校、国内“双一流”等兄弟院校、国外知名大学的优秀学生加盟本实验室。实验室将为研究生(包括博士生、工学硕士、工程硕士)提供广阔的研究平台,充足的生活补助,赴国外著名大学(包括美国、德国、英国、法国、韩国、日本、新加坡、新西兰等)交流研究的机会和精彩的研究生生活。本实验室长期招聘博士后。

实验室已毕业研究生目前主要去向有:西北工业大学、中山大学、北京理工大学等,中国航天一院、三院、五院、六院、八院等京沪地区航天核心单位,航空主机所,中国兵器集团核心研究所,国家电网以及五大发电集团核心研究部门等央企核心部门,国外著名大学与科研机构研究人员或博士后,世界五百强外资企业在京沪地区重要研发部门(包括通用电气、斯伦贝谢、爱立信等)。

拟招生人数:博士生1-2人/年,硕士生1-2人/年,博士后工作人员名额不限。欢迎有力学、能源动力、航天航空、船舶与海洋等相关工科背景的同学加入本实验室。

奖励与荣誉

北京市科学技术进步二等奖(2021,排名1)

中国发明协会发明创新奖一等奖(2020,排名1)

中国产学研合作促进会创新促进奖(2018,个人)

北京市教育教学成果奖一等奖(2018)

德国纽伦堡国际发明展发明金奖(2次)、日内瓦国际发明展银奖(1次)、美国硅谷国际发明展金奖(1次)等

德国洪堡学者

AIAA副会士(2020)

德国慕尼黑工业大学TUM-大使Ambassador(2019)

ASME高级会员

APS-流体分会高级会员

学术成果

A.强可压气液两相流模型、算法及物理机理

Sheng, X.; Fan, W.; Wu, W.; Wen, H.; Wang, B.*; 2023. Analysis of Wave Converging Phenomena inside the Shocked Two-Dimensional Cylindrical Water Column, Journal of Fluid Mechanics, 964. https://doi.org/10.1017/jfm.2023.239

王兵; 范文琦; 徐胜; 高瞻; 2022. 极端条件两相界面流与反应流机理、模型与算法研究进展, 气体物理, 7(06): 1-32. https://doi.org/10.19527/j.cnki.2096-1642.0941

Jin, X.; Cheng, X.; Wang, Q.; Wang, B.; 2022. Numerical simulation for rarefied hypersonic flows over non-rectangular deep cavities, Physics of Fluids, 34(8). https://doi.org/10.1063/5.0102685

吴汪霞; 王兵; 王晓亮; 刘青泉; 2021. 非等强度多道冲击波作用下空泡溃灭机制分析, 航空学报, 40(12): 625894-625894. https://doi.org/10.7527/S1000-6893.2021.25894

Gao, Z.; Wu, W.; Wang, B.*; 2021. The effects of nanoscale nuclei on cavitation, Journal of Fluid Mechanics, 911, A20. https://doi.org/10.1017/jfm.2020.1049

Gao, Z.; Wu, W.; Sun, W.; Wang, B.*; 2021. Understanding the stabilization of a bulk nanobubble: a molecular dynamics analysis, Langmuir, 37(38), 11281-11291. https://doi.org/10.1021/acs.langmuir.1c01796(封面文章)

Wu, W.; Liu, Q.; Wang, B.; 2021. The effects of nanoscale nuclei on cavitation, 25th International Congress of Theoretical and Applied Mechanics - ICTAM, 2020+1, Milan, Italy, on August 22-27, 2021.

Wu, W.; Liu, Q.; Wang, B.*; 2021. Curved surface effect on high-speed droplet impingement, Journal of Fluid Mechanics, 909, A7. https://doi.org/10.1017/jfm.2020.926

Wu, W.; Wang, B.; Liu, Q.*; 2021. Tandem cavity collapse in a high-speed droplet impinging on a 180° constrained wall, Journal of Fluid Mechanics, 932, A52. https://doi.org/10.1017/jfm.2021.1044.

Xiang, G.; Ren, Z.; Kim, S.; Wang, B.*; 2020. Numerical analysis on the disintegration of gas-liquid interface in two-phase shear-layer flows, Aerospace Science and Technology, 98, 105710. https://doi.org/10.1016/j.ast.2020.105710

Wu, W.; Wang, B.*; Xiang, G.; 2019. Impingement of high-speed cylindrical droplets embedded with an air/vapour cavity on a rigid wall: numerical analysis, Journal of Fluid Mechanics, 864, 1058–1087. https://doi.org/10.1017/jfm.2019.55

Xiang, G.; Wang, B.*; 2019. Theoretical and numerical studies on shock reflection at water/air two-phase interface: fast-slow case, International Journal of Multiphase Flow, 114, 219–228. https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.002

Zhang, C.; Xiang, G.M.; Wang, B.; Hu, X.Y.*; Adams, N.A.; 2019. A weakly compressible SPH method with WENO reconstruction, Journal of Computational Physics, 392, 1–18. https://doi.org/10.1016/j.jcp.2019.04.038

Herty, M.; Müller, S.*; Gerhard, N.; Xiang, G.; Wang, B.; 2018. Fluid-structure coupling of linear elastic model with compressible flow models, International Journal for Numerical Methods in Fluids, 86, 365–391. https://doi.org/10.1002/fld.4422

Wang, B.; Xiang, G.; Hu, X.Y.*; 2018. An incremental-stencil WENO reconstruction for simulation of compressible two-phase flows, International Journal of Multiphase Flow, 104, 20–31. https://doi.org/10.1016/j.ijmultiphaseflow.2018.03.013

Wu, W.; Xiang, G.; Wang, B.*; 2018. On high-speed impingement of cylindrical droplets upon solid wall considering cavitation effects, Journal of Fluid Mechanics, 857, 851–877. https://doi.org/10.1017/jfm.2018.753

Xiang, G.; Wang, B.*; 2018. Numerical investigation on the interaction of planar shock wave with an initial ellipsoidal bubble in liquid medium, AIP Advances, 8, 075128. https://doi.org/10.1063/1.5047570(编辑精选)

Xiang, G.; Wang, B.*; 2017. Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity, Journal of Fluid Mechanics, 825, 825–852. https://doi.org/10.1017/jfm.2017.403

Zhang, P.; Wang, B.*; 2017. Effects of elevated ambient pressure on the disintegration of impinged sheets, Physics of Fluids, 29, 042102. https://doi.org/10.1063/1.4981777

Hu, X.Y.*; Wang, B.; Adams, N.A.; 2015. An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme, Journal of Computational Physics, 301, 415–424. https://doi.org/10.1016/j.jcp.2015.08.043

B.强可压缩反应流物理机制及动力学规律

Chen, Q.*; Wang B.*; 2021. The spatial growth of supersonic reacting mixing layers: Effects of combustion mode, Aerospace Science and Technology, 116, 106888. https://doi.org/10.1016/j.ast.2021.106888.

Shahsavari, M.; Wang, B.*; Zhang, B.; Jiang, G.; Zhao, D.; 2021. Response of supercritical round jets to various excitation modes, Journal of Fluid Mechanics, 915, A47. https://doi.org/10.1017/jfm.2021.78

Ren, Z.; Wang, B.*; Xiang, G.; Zhao, D.; Zheng, L.; 2019. Supersonic spray combustion subject to scramjets: progress and challenges, Progress in Aerospace Sciences, 105, 40–59. https://doi.org/10.1016/j.paerosci.2018.12.002

Ren, Z.; Wang, B.*; Zhang, F.; Zheng, L.; 2019. Effects of eddy shocklets on the segregation and evaporation of droplets in highly compressible shear layers, AIP Advances, 9, 125101. https://doi.org/10.1063/1.5125121

Ren, Z.; Wang, B.*; Hu, B.; Zheng, L.; 2018. Numerical analysis of supersonic flows over an aft-ramped open-mode cavity, Aerospace Science and Technology, 78, 427–437. https://doi.org/10.1016/j.ast.2018.05.003

Ren, Z.; Wang, B.*; Zhao, D.; Zheng, L.; 2018. Flame propagation involved in vortices of supersonic mixing layers laden with droplets: Effects of ambient pressure and spray equivalence ratio, Physics of Fluids, 30, 106107. https://doi.org/10.1063/1.5049840

Ren, Z.; Wang, B.*; Zheng, L.; 2018. Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets, Physics of Fluids, 30, 036101. https://doi.org/10.1063/1.5011708 (特色文章)

Ren, Z.; Wang, B.*; Zheng, L.; Zhao, D.; 2018. Numerical studies on supersonic spray combustion in high-temperature shear flows in a scramjet combustor, Chinese Journal of Aeronautics, 31, 1870–1879. https://doi.org/10.1016/j.cja.2018.06.020

Ren, Z.; Wang, B.*; Xie, Q.; Wang, D.; 2017. Thermal auto-ignition in high-speed droplet-laden mixing layers, Fuel, 191, 176–189. https://doi.org/10.1016/j.fuel.2016.11.073

Ren, Z.; Wang, B.*; Yang, S.; Xie, Q.; Liu, H.; Wang, D.; 2017. Evolution of flame kernel in one eddy turnover of high-speed droplet laden shear layers, Journal of Loss Prevention in the Process Industries, 49, 938–946. https://doi.org/10.1016/j.jlp.2017.05.009

Wang, B.*; Wei, W.; Zhang, Y.; Zhang, H.; Xue, S.; 2015. Passive scalar mixing in Mc <1 planar shear layer flows, Computers & Fluids, 123, 32–43. https://doi.org/10.1016/j.compfluid.2015.09.006

Zhang, Y.; Wang, B.*; Zhang, H.; Xue, S.; 2015. Mixing enhancement of compressible planar mixing layer impinged by oblique shock waves, Journal of Propulsion and Power, 31, 156–169. https://doi.org/10.2514/1.B35423

C.连续旋转爆震与斜爆震

Wen, H.; Fan, W.; Xu, S.; Wang, B.*; 2023. Numerical Study on Droplet Evaporation and Propagation Stability in Normal-Temperature Two-Phase Rotating Detonation System, Aerospace Science and Technology, 138. https://doi.org/10.1016/j.ast.2023.108324

Yan, C.; Nie, W.; Wang, B.; Lin, W.*; 2023. Rotating Detonation Combustion of Liquid Kerosene under near-Ramjet Limit Conditions, AIP Advances, 13(6). https://doi.org/10.1063/5.0157988

Wen, H.; Fan, W.; Wang, B.*; 2023. Theoretical analysis on the total pressure gain of rotating detonation systems, Combustion and Flame, 248. https://doi.org/10.1016/j.combustflame.2022.112582

Ren, Z.; Sun, Y.; Wang B.*; 2022. Propagation behaviors of the rotating detonation wave in kerosene-air two-phase mixtures with wide equivalence ratios, Flow Turbulence and Combustion, 110, 735-753. https://doi.org/10.1007/s10494-022-00393-z

Wen, H.; Wei, W.; Fan, W.; Xie, Q.; Wang, B.*; 2022. On the propagation stability of droplet-laden two-phase rotating detonation waves. Combustion and Flame, 244. https://doi.org/10.1016/j.combustflame.2022.112271

Zhang, B.; Shahsavari, M.; Chen, J.; Wen, H.; Wang, B.; Tian, X.; 2022. The propagation characteristics of particle-laden two-phase detonation waves in pyrolysis mixtures of C(s)/H2/CO/CH4/O2/N2, Aerospace Science and Technology, 130. https://doi.org/10.1016/j.ast.2022.107912

师迎晨; 张任帅; 计自飞; 王兵; 2022. 高速飞行器的连续旋转爆震推进技术, 空气动力学学报, 40(01): 101-113.

Ji, Z.; Zhang, B.; Zhang, H.; Wang, B.*; Wang, C.; 2022. Reduction of feedback pressure perturbation for rotating detonation combustors, Aerospace Science and Technology, 126, 1070635. https://doi.org/10.1016/j.ast.2022.107635

Zhang, B.; Chen, J.; Shahsavari, M.; Wen, H.; Wang, B.; Tian, X.; 2022. Effects of Inert Dispersed Particles on the Propagation Characteristics of a H2/Co/Air Detonation Wave, Aerospace Science and Technology, 126, 107660. https://doi.org/10.1016/j.ast.2022.107660

王兵, 谢峤峰, 闻浩诚, 滕宏辉, 张义宁 周林 2021. 爆震发动机研究进展, 推进技术, 42(04): 721-737+716.

Ji, Z.; Zhang, H.; Wang, B.*; 2021. Thermodynamic performance analysis of the rotating detonative airbreathing combined cycle engine, Aerospace Science and Technology 113, 106694. https://doi.org/10.1016/j.ast.2021.106694.

Ren, Z.; Wang, B.*; Zheng, L.; 2021. Wedge-induced oblique detonation waves in supersonic kerosene-air premixing flows with oscillating pressure, Aerospace Science and Technology, 110. https://doi.org/10.1016/j.ast.2020.106472

Ren, Z.,; Wang, B.*; Wen, J.; Zheng, L.; 2021. Stabilization of wedge-induced oblique detonation waves in pre-evaporated kerosene–air mixtures with fluctuating equivalence ratios, Shock Waves, 31(7), 727-739. https://doi.org/10.1007/s00193-021-01050-6

Ji, Z.; Duan, R.; Zhang, R.; Zhang, H.; Wang, B.*; 2020. Comprehensive performance analysis for the rotating detonation-based turboshaft engine, International Journal of Aerospace Engineering, 9587813. https://doi.org/10.1155/2020/9587813

Ji, Z.; Zhang, H.; Wang, B.*; He, W.; 2020. Comprehensive performance analysis of the turbofan with a multi-annular rotating detonation duct burner, Journal of Engineering for Gas Turbines and Power-Transactions 142(2), 021007. https://doi.org/10.1115/1.4045518

Ma, J.; Luan, M.; Xia, Z..; Wang, J.*; Zhang, S.; Yao, S.; Wang, B.; 2020. Recent progress, development trends, and consideration of continuous detonation engines, AIAA Journal, 58(12), 4976-5035. https://doi.org/10.2514/1.J058157

Ren, Z.; Wang, B.*; 2020. Numerical study on stabilization of wedge-induced oblique detonation waves in premixing kerosene-air mixtures, Aerospace Science and Technology, 107, 106245. https://doi.org/10.1016/j.ast.2020.106245

Wang, B.; Wang, J.; 2020. Introduction to the special section on recent progress on rotating detonation and its application, AIAA Journal, 58(12), 4974-4975. https://doi.org/10.2514/1.J060144

Wen, H.; Wang, B.*; 2020. Experimental study of perforated-wall rotating detonation combustors, Combustion and Flame, 213, 52-62. https://doi.org/10.1016/j.combustflame.2019.11.028

He, W.; Xie, Q.; Ji, Z.; Rao, Z.; Wang, B.*; 2019. Characterizing continuously rotating detonation via nonlinear time series analysis, Proceedings of the Combustion Institute, 37, 3433–3442. https://doi.org/10.1016/j.proci.2018.07.045

Ji, Z.; Zhang, H.; Wang, B.*; 2019. Performance analysis of dual-duct rotating detonation aero-turbine engine, Aerospace Science and Technology, 92, 806–819. https://doi.org/10.1016/j.ast.2019.07.011

Ren, Z.; Wang, B.*; Xiang, G.; Zheng, L.; 2019. Numerical analysis of wedge-induced oblique detonations in two-phase kerosene–air mixtures, Proceedings of the Combustion Institute, 37, 3627–3635. https://doi.org/10.1016/j.proci.2018.08.038

Wen, H.; Xie, Q.; Wang, B.*; 2019. Propagation behaviors of rotating detonation in an obround combustor, Combustion and Flame, 210, 389–398. https://doi.org/10.1016/j.combustflame.2019.09.008

Xie, Q.; Wang, B.*; Wen, H.; He, W.; 2019. Thermoacoustic instabilities in an annular rotating detonation combustor under off-design condition, Journal of Propulsion and Power, 35, 141–151. https://doi.org/10.2514/1.B37044

Xie, Q.; Wang, B.*; Wen, H.; He, W.; Wolanski, P.; 2019. Enhancement of continuously rotating detonation in hydrogen and oxygen-enriched air, Proceedings of the Combustion Institute, 37, 3425–3432. https://doi.org/10.1016/j.proci.2018.08.046

Ren, Z.; Wang, B.*; Xiang, G.; Zheng, L.; 2018. Effect of the multiphase composition in a premixed fuel–air stream on wedge-induced oblique detonation stabilisation, Journal of Fluid Mechanics, 846, 411–427. https://doi.org/10.1017/jfm.2018.289

Xie, Q.; Wen, H.; Li, W.; Ji, Z.; Wang, B.*; Wolanski, P.; 2018. Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition, Energy, 151, 408–419. https://doi.org/10.1016/j.energy.2018.03.062

Zheng, D.; Wang, B.*; 2018. Utilization of nonthermal plasma in pulse detonation engine ignition, Journal of Propulsion and Power, 34, 539–549. https://doi.org/10.2514/1.B36591

D.燃烧不稳定性机制、模型及调控

Rao, Z.; Li, R.; Zhao, P.; Wang, B.*; Zhao, D.; Xie, Q.; 2022. Similarity phenomena of lean swirling flames at different bulk velocities with acoustic disturbances, Chinese Journal of Aeronautics. https://doi.org/10.1016/j.cja.2022.07.001

Saqib Akhtar, M.; Shahsavari, M.; Ghosh, A.; Wang, B.*; Hussain, Z.; Rao, Z.; 2023. Effect of fuel reactivity on flame properties of a low-swirl burner, Experimental Thermal and Fluid Science, 142. https://doi.org/10.1016/j.expthermflusci.2022.110795

Li, W.; Zhao, D.*; Chen,X.; Sun, Y.; Ni, S.; Guan, D.;Wang, B.; 2021. Numerical investigations on solid-fueled ramjet inlet thermodynamic properties effects on generating self-sustained combustion instability, Aerospace Science and Technology, 119, 107097. https://doi.org/10.1016/j.ast.2021.107097

Rao, Z.; Li, R.; Zhang, B.; Wang, B.*; Zhao, D.; Akhtar, M.S.; 2021. Experimental investigations of equivalence ratio effect on nonlinear dynamics features in premixed swirl-stabilized combustor, Aerospace Science and Technology, 112,106601. https://doi.org/10.1016/j.ast.2021.106601

Rao, Z.; Li, R.; Zhang, B.; Wang, B.*; Zhao, D.; Shahsavari, M.; 2021. Nonlinear dynamics of a swirl-stabilized combustor under acoustic excitations: influence of the excited combustor natural mode oscillations, Flow, Turbulence and Combustion, 107, 683-708. https://doi.org/10.1007/s10494-021-00249-y

Shahsavari, M.*; Farshchi, M.; Arabnejad, M.H.; Wang, B.; 2021. The role of flame–flow interactions on lean premixed lifted flame stabilization in a low swirl flow, Combustion Science and Technology, 1-26. https://doi.org/10.1080/00102202.2021.1976766

Zhang, B.;Shahsavar, M.; Rao, Z.; Yang, S.; Wang, B.*; 2021. Thermoacoustic Instability Drivers and Mode Transitions in a Lean Premixed Methane-Air Combustor at Various Swirl Intensities, Proceedings of the Combustion Institute, 38(4): 6115-6124. https://doi.org/10.1016/j.proci.2020.06.226

Ji, S.; Wang, B.*; Zhao, D.; 2020. Numerical analysis on combustion instabilities in end-burning-grain solid rocket motors utilizing pressure-coupled response functions, Aerospace Science and Technology, 98, 105701. https://doi.org/10.1016/j.ast.2020.105701

Qin, J.; Zhou, L.; Zhang, H.*; Wang, B.; 2020. Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators, Science China-Technological Sciences, 64, 375-386. https://doi.org/10.1007/s11431-019-1575-6

Sun, Y.; Rao, Z.; Zhao, D.*; Wang, B.; Sun, D.; Sun, X.; 2020. Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor, Applied Energy, 264, 114698. https://doi.org/10.1016/j.apenergy.2020.114698

Zhang, B.; Shahsavari, M.; Rao, Z.; Li, R.; Yang, S.; Wang, B.*; 2020. Effects of the fresh mixture temperature on thermoacoustic instabilities in a lean premixed swirl-stabilized combustor, Physics of Fluids, 32, 047101. https://doi.org/10.1063/1.5133859

Ji, S.; Wang, B.*; 2019. Modeling and analysis of triggering pulse to thermoacoustic instability in an end-burning-grain model solid rocket motor, Aerospace Science and Technology, 95, 105409. https://doi.org/10.1016/j.ast.2019.105409

Shahsavari, M.*; Farshchi, M.; Chakravarthy, S.R.; Chakraborty, A.; Aravind, I.B.; Wang, B.; 2019. Low swirl premixed methane-air flame dynamics under acoustic excitations, Physics of Fluids, 31, 095106. https://doi.org/10.1063/1.5118826 (Editor's Pick)

Zhang, B.; Shahsavari, M.; Rao, Z.; Yang, S.; Wang, B.; 2019. Contributions of hydrodynamic features of a swirling flow to thermoacoustic instabilities in a lean premixed swirl stabilized combustor, Physics of Fluids, 31, 075106. https://doi.org/10.1063/1.5108856 (Editor's Pick)

Qin, J.; Zhang, H.; Wang, B.*; 2018. Numerical evaluation of acoustic characteristics and their damping of a thrust chamber using a constant-volume bomb model, Chinese Journal of Aeronautics, 31, 470–480. https://doi.org/10.1016/j.cja.2018.01.007

Qian, C.; Bing, W.*; Huiqiang, Z.; Yunlong, Z.; Wei, G.; 2016. Numerical investigation of H2/air combustion instability driven by large scale vortex in supersonic mixing layers, International Journal of Hydrogen Energy, 41, 3171–3184. https://doi.org/10.1016/j.ijhydene.2015.11.029

E.其他

Jin, X.; Cheng, X.; Wang, Q.; Wang, B.*; 2023. Numerical Analysis of Rarefied Hypersonic Flows over Inclined Cavities, International Journal of Heat and Mass Transfer, 214. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124401

Jin, X.*; Wang, B.; 2023. Numerical investigation of the effects of axial temperature gradient and cooling rate on InGaSb crystal growth under microgravity, Journal of Crystal Growth, 607. https://doi.org/10.1016/j.jcrysgro.2023.127110

Liu, Y.; Zhang, Q.*; Zhang, H.; Wang, B.; 2022. Numerical investigation on the performance of internal flow and atomization in the recessed gas-centered swirl coaxial injectors, Aerospace Science and Technology, 129. https://doi.org/10.1016/j.ast.2022.107858

Cai, T.; Backer, S.M.; Cao, F.; Wang, B.; Tang, A.; Fu, J.; Han, L.; Sun, Y.; Zhao, D.*; 2021. NOx emission performance assessment on a perforated plate-implemented premixed ammonia-oxygen micro-combustion system, Chemical Engineering Journal, 417, 128033. https://doi.org/10.1016/j.cej.2020.128033

Cai, T.; Zhao, D.*; Sun, Y.; Ni, S.; Li, W.; Guan, D.; Wang, B.; 2021. Evaluation of NOx emissions characteristics in a CO2-Free micro-power system by implementing a perforated plate, Renewable and Sustainable Energy Reviews, 145, 111150. https://doi.org/10.1016/j.rser.2021.111150

Chen, Z.; Huang, F.; Jin, X.*; Cheng, X.; Wang, B.; 2021. A novel lightweight aerodynamic design for the wings of hypersonic vehicles cruising in the upper atmosphere, Aerospace Science and Technology, 109, 106418. https://doi.org/10.1016/j.ast.2020.106418

Jin, X.; Huang, F.; Miao, W.; Cheng, X.; Wang, B.; 2021. Effects of the boundary-layer thickness at the cavity entrance on rarefied hypersonic flows over a rectangular cavity, Physics of Fluids, 33, 036116. https://doi.org/10.1063/5.0045056

Jin, X.*; Wang, B.; Cheng, X.; Wang, Q.; Huang, F.; 2021. Effects of corner rounding on aerothermodynamic properties in rarefied hypersonic flows over an open cavity, Aerospace Science and Technology, 110, 106498. https://doi.org/10.1016/j.ast.2021.106498

Um, K.; Hu, X.; Wang, B.; Thuerey, N.; 2021. Spot the Difference: Accuracy of numerical simulations via the human visual system, ACM Transactions on Applied Perception, 18(2), 6:1-6:15. https://doi.org/10.1145/3449064

Sun, Y.; Cai, T.; Shahsavari, M.; Sun, D.; Sun, X.; Zhao, D.*; Wang, B.; 2021. RANS simulations on combustion and emission characteristics of a premixed NH3/H2 swirling flame with reduced chemical kinetic model, Chinese Journal of Aeronautics, 34(12), 17-27. https://doi.org/10.1016/j.cja.2020.11.017

Cai, T.; Zhao, D.*; Wang, B.; Li, J.; Guan, Y.; 2020. NOx emission and thermal performances studies on premixed ammonia-oxygen combustion in a CO2-free micro-planar combustor, Fuel, 280, 118554. https://doi.org/10.1016/j.fuel.2020.118554

Jin, X.*; Wang, B.; Cheng, X.; Wang, Q.; Huang, F.; 2020. The effects of Maxwellian accommodation coefficient and free-stream Knudsen number on rarefied hypersonic cavity flows, Aerospace Science and Technology, 97, 105577. https://doi.org/10.1016/j.ast.2019.105577

Jin, X.; Huang, F.; Cheng, X.; Wang, Q.; Wang, B.*; 2019. Monte Carlo simulation for aerodynamic coefficients of satellites in low-earth orbit, Acta Astronautica, 160, 222–229. https://doi.org/10.1016/j.actaastro.2019.04.012

Rao, Z.; Luo, Y.; Wang, B.*; Xie, Q.; He, W.; 2019. Mitigation of H2/air gaseous detonation via utilization of PAN-based carbon fiber felt, International Journal of Hydrogen Energy, 44, 5054–5062. https://doi.org/10.1016/j.ijhydene.2018.12.196

Baidu
sogou
Baidu
sogou